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a b s t r a c t

The McGurk effect is a widely used measure of multisensory integration during speech

perception. Two observations have raised questions about the validity of the effect as a tool

for understanding speech perception. First, there is high variability in perception of the

McGurk effect across different stimuli and observers. Second, across observers there is low

correlation between McGurk susceptibility and recognition of visual speech paired with

auditory speech-in-noise, another common measure of multisensory integration. Using

the framework of the causal inference of multisensory speech (CIMS) model, we explored

the relationship between the McGurk effect, syllable perception, and sentence perception

in seven experiments with a total of 296 different participants. Perceptual reports revealed

a relationship between the efficacy of different McGurk stimuli created from the same

talker and perception of the auditory component of the McGurk stimuli presented in

isolation, both with and without added noise. The CIMS model explained this strong

stimulus-level correlation using the principles of noisy sensory encoding followed by

optimal cue combination within a common representational space across speech types.

Because the McGurk effect (but not speech-in-noise) requires the resolution of conflicting

cues between modalities, there is an additional source of individual variability that can

explain the weak observerelevel correlation between McGurk and noisy speech. Power

calculations show that detecting this weak correlation requires studies with many more

participants than those conducted to-date. Perception of the McGurk effect and other types

of speech can be explained by a common theoretical framework that includes causal

inference, suggesting that the McGurk effect is a valid and useful experimental tool.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Viewing the talker’s face influences the perception of auditory

speech, as exemplified by McGurk and MacDonald’s discovery

that pairing incongruent auditory and visual syllables can

evoke the percept of a completely different syllable (McGurk&

MacDonald, 1976). In the decades since its discovery, the

McGurk effect has grown into one of the most popular

experimental tools for assessing multisensory integration,

with thousands of citations across both behavioral and neural

sciences (Beauchamp, 2018).

Recently, doubts have arisen about the utility of the

McGurk effect as a tool for understanding speech perception,

including the suggestion that it should be “retired”

(Rosenblum, 2019). In a large study, Basu Mallick and col-

leagues examined perception of 12 different McGurk stimuli

by 165 participants tested in the laboratory (BasuMallick et al.,

2015). There was high variability, both across stimuli (rates

ranging from 17% to 58%) and across participants (rates from

0% to 100%). This high variability has been used as an argu-

ment that the McGurk effect is unreliable and hence poorly

suited for experimental study (Alsius et al., 2018).

A second critique of the McGurk effect arises from com-

parisons with other measures of speech perception. Viewing

the talker’s face benefits understanding of noisy auditory

speech (Peelle & Sommers, 2015; Sumby & Pollack, 1954). Van

Engen and colleagues (Van Engen et al., 2017) found high

variability in visual enhancement of noisy speech and in rates

of the McGurk effect, but low correlation between the two

measures for any of the twelve types of noisy speech exam-

ined, with a maximum of 4% variance explained. Similarly,

Brown and colleagues (Brown et al., 2018) found only a weak

correlation between lipreading accuracy and McGurk sus-

ceptibility (3% of variance explained; 8% variance if lipreading

responses were grouped by place-of-articulation).

We reasoned that modeling the processes underlying au-

diovisual speech perception might shed light on these obser-

vations. Two processes thought to underlie multisensory

integration are noisy sensory encoding and optimal cue combination.

Noisy sensory encoding assumes that observers to do not have

veridical access to the physical properties of a stimulus, but

only to a perceptual representation that is corrupted by sensory

noise and that can vary on repeated presentations of identical

stimuli (Deneve et al., 2001). Optimal cue combination assumes

that when cues from different modalities are combined, they

are weighted by the reliability of eachmodality, a process often

referred to as Bayesian integration (Alais & Burr, 2004; Aller &

Noppeney, 2019; Ernst & Banks, 2002; Magnotti et al., 2013)

although there are alternative algorithms such as probability

summation (Arnold et al., 2019). When there is a potential for

the cues to arise from separate causes (nearly always the case

in natural perception), optimal cue combination requires causal

inference: judging whether the cues in the different modalities

arise from the same physical cause. Causal inference is

necessary because it is only beneficial to integrate cues gener-

ated by the same source; integrating cues from different sour-

ces leads to misestimation (French & DeAngelis, 2020; Kording

et al., 2007; Shams & Beierholm, 2010). Humans are frequently

confronted with multiple talkers, necessitating causal
inference (Ma et al., 2009; Massaro, 1998; Noppeney& Lee, 2018;

Vroomen, 2010) and individual differences in causal inference

judgments have been used to characterize individual- and

group-level differences in audiovisual speech perception (Baum

et al., 2015; Gurler et al., 2015; Magnotti & Beauchamp, 2015;

Magnotti et al., 2013; Stropahl et al., 2017).

The causal inference of multisensory speech (CIMS) model

incorporates these processes into a principled framework that

predicts perception of arbitrary combinations of auditory and

visual speech (Magnotti & Beauchamp, 2017). The CIMSmodel

has been used to explain a number of puzzling audiovisual

speech phenomena, such as the increase in the McGurk effect

observed with co-articulation (Magnotti, Smith, et al., 2018);

the decrease in the McGurk effect observed with slow play-

back rates (Magnotti, Basu Mallick, & Beauchamp, 2018); and

why the McGurk effect is produced by some incongruent syl-

lables but not others (Magnotti & Beauchamp, 2017).

If the same model can account for weak observerelevel

correlation and strong stimulus-level correlation between

the McGurk effect and speech-in-noise, it suggests that both

types of speech are processed using common perceptual

mechanisms, with the implication that the McGurk effect is a

useful experimental tool. On the other hand, if models derived

from the McGurk effect do not apply to other types of speech,

it suggests that the McGurk effect has limited utility (Alsius

et al., 2018; Rosenblum, 2019).
2. Methods

2.1. Human Subject statement

All experiments were approved by the Committee for the

Protection of Human Subjects of Baylor College of Medicine.

2.2. Data availability statement

All data, code and materials, including experimental stimuli,

are available at https://osf.io/C9EVY/

We report how we determined our sample size, all data

exclusions, all inclusion/exclusion criteria, whether inclu-

sion/exclusion criteria were established prior to data analysis,

all manipulations, and all measures in the study. No part of

the study procedures was pre-registered prior to the research

being conducted. No part of the study analyses was pre-

registered prior to the research being conducted.

2.3. Overview of the CIMS model

For a full description, see (Magnotti & Beauchamp, 2017).

Briefly, for each presentation of a given audiovisual stimulus,

the model assumes each modality is encoded independently.

For a single trial of a stimuluswith auditory component SA and

visual component SV, the model generates two vectors: the

auditory representation XA � N ðSA; SAÞ and the visual rep-

resentation XV � N ðSV; SVÞ, where N ðm; SÞ is a normal dis-

tribution with mean m and variance S. Across many trials, the

values of XA and XV will center around the exemplar locations

SA and SV with variance equal to the modality-specific

encoding variances (SA and SV).

https://osf.io/C9EVY/
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The auditory and visual components of speech may

emanate from a single talker (C ¼ 1) or two separate talkers

(C ¼ 2). To form the C ¼ 1 representation, the model assumes

Bayesian inference (integration o cues according to their re-

liabilities). On each trial, the integrated representation is

calculated as XAV ¼ SAVðS�1
A XA þS�1

V XVÞ, where SAV ¼
ðS�1

A þ S�1
V Þ�1

. Across many trials, the distribution of the C ¼ 1

representations will be the weighted average of the locations

for SA and SV with the weighting controlled by the relative

precision of the encoding matrices. For C ¼ 2, the represen-

tation is the encoded representation of the auditory portion of

the stimulus (here we assume observers always choose to

report auditory modality when the cues are clearly from

separate causes). Next, the log posterior ratio of C ¼ 1 to C ¼ 2

is calculated:

d¼ log
PðC ¼ 1jXA;XvÞ
PðC ¼ 2jXA;XvÞ¼ log

PðXA;XvjC ¼ 1Þ
PðXA;XvjC ¼ 2Þ þ log

PðC ¼ 1Þ
PðC ¼ 2Þ

The prior probability of a common cause, P(C ¼ 1), is set to

.50 (giving no prior bias toward one vs two causes), resulting in

P(C ¼ 2) ¼ .50. PðXA;XVjC¼ 1Þ is calculated for each syllable, Si,

individually. These probabilities are then combined, weighted

by their respective prior probabilities to determine the overall

conditional probability:

P
�
XA;XVjC¼1Þ¼

X
i

PðXA;XVjSi

�
pSðSiÞ

PðXA;XVjC¼ 2Þ is calculated using a similar process for all

possible incongruent syllable combinations. Their locations in

representational space are determined as

mSi ;C¼2 ¼ SSi ;C¼2

�
S�1

A0 XA þS�1
V0 XV

�
with SSi ;C¼2 ¼

�
S�1

A0 þ S�1
V0
��1

XA and XV are the locations for the unisensory compo-

nents. The matrices SA0 and SV0 are the original sensory noise

matrices plus the variance of the syllable category that

generated the exemplar. The probabilities are then calculated

using the Gaussian density: N PðXA;XV;mSi ;C¼2;SSi ;C¼2Þ and

weighted by their prior probabilities (assumed to be equal).

After the decision variable d is computed, it is converted to

the probability of each causal structure: P

�
C ¼ 1 j XA; XVÞ ¼

1
1þe�d; PðC ¼ 2 j XA;XV

�
¼ 1

1þed

Next, the C ¼ 1 and C ¼ 2 representations are combined,

weighted by their likelihood:

XCIMS ¼PðC¼1 j XA;XVÞXAV þ PðC¼ 2 j XA;XVÞXA

This combination is done on a trial-by-trial basis, produc-

ing a non-linear combination of the original exemplars (XA

and XV). To produce a categorical percept, the syllable that is

most likely to have generated the integrated representation is

determined: PðXA;XVjSiÞ ¼ N PðXA;XV;mSi ;C¼1;SSi ;C¼1Þ, where N P

is the P-dimensional Gaussian density function, mSi ;C¼1 is the P-

dimensional location of a particular syllable category and

SSi ; C¼1 ¼ Si þ SAV is the sum of the category’s variance-

covariance matrix and the variance of XAV. All syllables are

assumed have equal prior probability, all locations within the

representational space have equal prior probability, and the
category variance-covariance matrices are assumed to be

equal.

The CIMS model assumes that individuals vary in the

precision with which they represent speech features, but that

a given individual has a constant level of precision across

different stimulus exemplars. Measurements of neural vari-

ability in responses with techniques such as single-trial fMRI,

MEG and iEEG could prove or disprove this assertion. In-

dividuals with less neural variability across trials would be

expected to have more precise perceptual representations of

speech features. Adding noise to the sensory stimulus is

assumed to broaden the variance of the distribution of

perceived locations in representational space. The sensory

noise for a specific modality is assumed to be constant and

characteristic of the specific observer.

2.4. Overview of experimental procedures

Participants viewed brief recordings of audiovisual speech

and reported their percepts. Experiments 1e6 examined

perception of syllables (bothMcGurk and congruent) using the

online data collection service Amazon Mechanical Turk

(Buhrmester et al., 2018). In a previous study, we found that

online testing gives similar results as in-person testing

(Magnotti, Smith, et al., 2018). Experiment 7 examined the

McGurk effect and perception of noisy sentences, with data

collected in-person at Baylor College of Medicine. A total of

262 different participants were tested online and 34 different

participants were tested in person for a total of 296 different

participants.

All data was analyzed using R (R Core Team, 2020). Vari-

ability wasmodeled using linearmixed effectsmodels (LMEs)

as implemented in the lme4 packager (Bates et al., 2015).

LMEs provide a consistent approach for understanding the

effect of both categorical and numeric independent variables

(fixed effects) while taking into account other sources of

variation (random effects such as participant effects or

stimulus effects). To test the significance of the fixed effects,

we report t-tests with Satterthwaite-approximated degrees

of freedom, as implemented in the lmerTest package

(Kuznetsova et al., 2017).

For the Mechanical Turk experiments, control stimuli were

included in each experiment, consisting of congruent AV

stimuli or noise-free A-only stimuli, to measure whether

participants were able to correctly perform the task. Perfor-

mance on control stimuli was high for every participant,

indicating a willingness and ability to attend to the stimulus,

correctly identify it, and select the appropriate response.

Sample sizes for the initial experiment (n ¼ 40 per stim-

ulus) were determined based on our previous use of similar

sample sizes to observe stimulus differences in the McGurk

effect. Because the stimuli chosen for the follow-up studies

depended on the results of Experiment 1, they could not be

pre-determined. Instead, we included replications of the pri-

mary effect (stimulus-level differences in auditory-only ac-

curacy relate to stimulus-level McGurk responses) in

subsequent experiments to bolster our confidence in the dif-

ference. Based on previous findings of no significant subject-

level correlations between McGurk and speech-in-noise, we

https://doi.org/10.1016/j.cortex.2020.10.002
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did not attempt a power analysis for experiment 7, and

instead used a sample size comparable to previous studies.

For experiment 5, data were collected in two groups of

n ¼ 25. Six participants enrolled in both groups. To avoid

unduly weighting the behavior of these six participants, their

data from the second testing group was excluded from anal-

ysis, leaving n ¼ 19 in the second group and a total of n ¼ 44

participants.

2.5. Online testing procedures for experiments 1 - 6

Participants enrolled as workers in the Mechanical Turk ser-

vice and requested to participate in our experiment, in return

for compensation of $10 per hour. After accepting the

assignment, they were directed to an informed consent

statement, followed by completion of a demographic ques-

tionnaire. Before starting the experiment, participants were

shown a demonstration video. Participants were instructed to

resize their browser window and their computer audio as

needed to make the demonstration video easily visible and

audible. The demonstration video could be repeated as often

as necessary by the participant. Then, the participants pro-

ceeded to the main experiment, which consisted of multiple

trials. Within each trial, participants viewed a single stimulus

and reported their percept using a forced-choice response,

selecting among three possibilities, “ba” (the auditory

component of the stimulus), “ga” (the visual component of the

stimulus) or “da/tha” (the McGurk or fusion percept). In a

previous study, we demonstrated similar results between this

set of forced-choice responses and open-choice responding

(BasuMallick et al., 2015). Forced-choice has the advantages of

reducing the time to analyze data and of reducing the exper-

imenter degrees of freedom available when quantifying open-

choice responses. No feedback was given to reduce demand

characteristics.

2.6. Experiment 1 stimulus creation

The experimental stimulus set in Experiment 1 consisted of

twenty different McGurk syllables (auditory “ba” paired with

visual “ga”, AbaVga) where the “ba” was different in each

syllable but the “ga” was identical. A female native speaker of

American English was recorded voicing the syllable “ba”

twenty times. The auditory component of each stimulus was

imported into MATLAB and the volume of each clip was

normalized by dividing the sound amplitude by the square

root of the squaredmean. The resulting waveformwas scaled

to prevent clipping, with each auditory track scaled to the

same power. See Supplemental Table 1 for quantification of

acoustic properties of the recordings.

The same talker was recorded saying a single “ga” using a

Panasonic AG-HVX200AP video camera. The camera view

showed the talker’s head and shoulders against a white

background. The video obtained was imported into Adobe

Premiere Pro CC 2015. Then, each of the twenty auditory “ba”

recordings was dubbed onto the visual portion of the “ga”

recording so that the auditory and visual components were

synchronized. Each was exported to MOV format and
Handbrake software was used to crop and convert the videos

to 640 by 480 resolution in the MP4 format.

The control stimulus set in Experiment 1 consisted of au-

diovisual recordings of a different female native speaker of

American English speaking three syllables for which the

auditory and visual components were congruent, (AbaVba,

AgaVga, AdaVda).

To avoid participant fatigue or adaptation, each participant

was presented with five different McGurk stimuli (randomly

selected from the entire battery of twenty) and the three

congruent stimuli. Each McGurk stimulus was presented nine

times and each congruent stimulus was presented three

times, all randomly interleaved.

A total of 160 participants were recruited (57 female, 93

male, 10 did not specify). The 20 stimuli were tested in 4

batches of 5 stimuli each. The first 40 participants viewed

the first five stimuli; the second 40 participants viewed the

next five stimuli; and so on. Since each participant viewed

one-quarter of the stimuli (5 out of 20), the final sample

size was 40 participants for each of the twenty McGurk

stimuli.

2.7. Experiment 2

From the twenty different McGurk stimuli presented in

Experiment 1, we selected two stimuli at opposite ends of the

distribution for further investigation, labeling them “S1” and

“S2”. A total of 40 participants were recruited for experiment 2

(10 female, 25 male, 5 did not specify). Each participant was

presented with 9 repetitions each of S1 and S2 and three

repetitions of the congruent stimuli, randomly interleaved,

and participants made forced choice responses.

2.8. Experiment 3

MATLAB was used to average the auditory components of S1

and S2 (after aligning auditory onsets) to create an interme-

diate stimulus labeled “S1.5” (the visual “ga” component of

S1.5 was identical to S1 and S2).

The experimental stimulus set in Experiment 3 consisted

of the auditory-only “ba” component of S1, S1.5 and S2. The

control stimulus set consisted of the auditory-only compo-

nent of the control stimuli in Experiment 1, auditory “ba”, “da”

and “ga”. The visual component for all stimuli consisted of

white text on a black square instructing participant to “Listen

to the audio.” 40 participants (14 female, 23 male, 3 did not

specify) were presented with nine repetitions of each of the

experimental stimuli and three repetitions of each of the

control stimuli, all randomly interleaved.

2.9. Experiment 4

The experimental stimuli were the audiovisual AbaVga syl-

lables S1, S1.5 and S2. The control stimuli were the congruent

syllables AbaVba, AgaVga and AdaVda. 40 participants (20

female, 19 male, 1 did not specify) were presented with nine

repetitions of each McGurk stimulus and three repetitions of

each congruent syllable, all randomly interleaved.

https://doi.org/10.1016/j.cortex.2020.10.002
https://doi.org/10.1016/j.cortex.2020.10.002
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2.10. Experiment 5

Auditory noise was added to S1 and S2 by combining each

stimulus with uniform white noise with signal to noise ratios

(SNRs) of �30, �24, �18, �12, 0 dB and no noise. Final Cut Pro

was used to create the noisy stimuli by combining the noise

clip and the syllable clip and adjusting the decibel levels of

each to the desired SNR. After noise was added, the volume of

each clips was RMS normalized in MATLAB and the stimuli

were imported into Final Cut Pro to add a blank visual screen

for the visual component, followed by resizing in Handbrake

to a 640:480 aspect ratio. 44 participants (21 female, 22 male, 1

did not specify). Each of the two stimuli (the “ba” extracted

from S1 and S2) was presented six times at each of the six

noise levels (72 total presentations). Control stimuli consisted

of two examples of auditory “da” and two examples of audi-

tory “ga” recorded by the same talker. The same six noise

levels were added to each control stimulus and each was

presented six times, ensuring an equal total number of

experimental and control stimulus presentations (72 for each).

2.11. Experiment 6

The 44 participants from Experiment 5 were invited to return.

38 participants returned (18 female, 19 male, 1 did not specify)

and rated theMcGurk stimuli S1, S1.5 and S2 to allow for intra-

participant comparison of noisy syllable and McGurk percep-

tion. Experimental stimuli consisted of 10 presentations each

of the McGurk stimuli S1, S1.5 and S2. Control stimuli con-

sisted of three presentations each of the congruent audiovi-

sual syllables AbaVba, AgaVga and AdaVda.

2.12. Experiment 7 overview

34 native English speakers (18 female, 16male) were tested in-

person at the Core for Advanced MRI at Baylor College of

Medicine. All tasks were presented using Matlab (Mathworks,

Inc., Natick, MA, USA) with the Psychophysics Toolbox ex-

tensions (Brainard, 1997; Pelli, 1997). Visual speech was pre-

sented on a high-resolution screen (Displayþþ LCD Monitor,

32-in., 1,920 � 1,080, 120 Hz, Cambridge Research Systems,

Rochester, UK). Auditory speech was presented through

speakers on either side of the screen at a constant sound

pressure level of 60 dB, a value similar to that of face-to-face

conversation.

2.13. Experiment 7: McGurk and congruent syllables

First, participants viewed stimuli consisting of 2-s recordings

of audiovisual syllables with no added noise. The syllables

were recorded by five different talkers. Each participant was

presented with a total of 270 trials: 20 repetitions � four

talkers� three syllables (two congruent: AbaVba, AdaVda; one

McGurk AbaVga) and 10 repetitions � one talker � three au-

diovisual syllables (all congruent: AbaVba, AdaVda, AgaVga),

all randomly interleaved. Participants reported the identity of

each syllable (“ba”, “da”, or “ga”) with a button press.
2.14. Experiment 7: Noisy speech

Second, participants were presented with 3-s duration sen-

tences recorded from a single male talker combined with

auditory pink noise at a signal-to-noise ratio (SNR) of �16 dB,

as used in a previous study (Van Engen et al., 2017). The sen-

tences were presented either alone (noisy auditory-only, A) or

paired with a video recording (noisy auditory þ visual, AV).

After the sentence ended, participants repeated the sentence

aloud. Responses were scored for number of correct keywords

(e.g., “The hot sun warmed the ground,” keywords in bold).

Each participant was presented with 80 sentence trials, con-

sisting of randomly interleaved presentations of 40 auditory-

only and 40 audiovisual sentences. To prevent perceptual

learning, individual sentences were never repeated.
3. Results

3.1. Section 1: Stimulus variability

If McGurk and other forms of speech are processed using

common perceptual mechanisms, then variability across

stimuli should create predictable changes. For instance, even

for a single talker, there is substantial variability in repeated

productions of the same speech token (Holmberg et al., 1994;

Whalen et al., 2018). In the CIMS model, this variability can be

modeled with a representational space that collapses all

auditory and visual speech features onto a one-dimensional

line with “ba”, “da”, and “ga” at neighboring locations. One

production of the syllable “ba” (Stimulus 1) might lie near the

prototypical “ba”, while a second production (Stimulus 2)

might lie further from the prototype (Fig. 1A).

An important feature of the CIMS model is noisy sensory

encoding. While the physical properties of a given speech

token place it at one location in representational space, sen-

sory encoding is noisydrepeated presentations of the iden-

tical token produce a distribution of perceived locations

whose mean is at the true location and whose variance is

proportional to the amount of sensory noise. Over repeated

presentations of Stimulus 1, its location far from the percep-

tual boundary means that despite sensory encoding noise,

nearly all of the perceived locations are in the “ba” region of

representational space (Fig. 1B). However, for repeated pre-

sentations of Stimulus 2, its location near a perceptual

boundary means that sensory noise places some of the

perceived locations in the “da” region of representation space

(Fig. 1C).

The CIMS model assumes that auditory syllables and

McGurk syllables are processed by the same perceptual

mechanisms, resulting in predictable differences if Stimulus 1

and 2 are paired with an identical visual “ga” in a McGurk

AbaVga stimulus. For Stimulus 1, optimal cue combination

produces an integrated representation that lies predomi-

nantly in the “ba” region of representational space, resulting

in primarily “ba” percepts (Fig. 1D). For Stimulus 2, the inte-

grated representation lies primarily in the “da” region of

https://doi.org/10.1016/j.cortex.2020.10.002
https://doi.org/10.1016/j.cortex.2020.10.002


Figure 1 e The CIMS model applied to stimulus variability. (A) In the causal inference of multisensory speech perception

(CIMS) model, the physical properties of auditory and visual speech can be collapsed onto a one-dimensional

representational space with different regions of the space representing different tokens ("ba", "da" and "ga" shown). The

physical properties of a token determine its location in representational space, as shown for two example/ba/tokens. The

left token (Stimulus 1) is closer to the center of the "ba" " region of representational space and hence is a more prototypical

"ba". The right token (Stimulus 2) is further from the center of the "ba" region of representational space, and hence is a less

prototypical "ba" . Dashed lines indicate boundaries between different regions of representational space. (B) In the sensory

encoding stage of the CIMS model, the physical properties of the stimulus are encoded with sensory noise, resulting in a

distribution of encoded values for any given token. The mean of the distribution is determined by the physical properties of

the stimulus and the variance of the distribution is determined by the sensory noise for that modality for that observer. For

Stimulus 1, the stimulus is far from the perceptual boundary (distance indicated by red arrow), with the result that even

after noisy encoding, most perceived locations are in the "ba" region of representational space, resulting in exclusively "ba"

percepts (green shaded region). (C) For Stimulus 2, the stimulus is close to the perceptual boundary (distance indicated by

red arrow) with the result that after noisy encoding, some perceived location s are in the "da" region of representational

space (blue shaded region). (D) In the cue integration stage of the CIMS model, auditory cues (green lines) and visual cues

(purple lines) are integrated using optimal cue combination, resulting in an average representation weighted by the

reliability of each modality. For Stimulus 1, most perceived locations for the integrated representation are in the "ba" x

region of representational space, resulting in mainly "ba" percepts (green shaded region). (E) For Stimulus 2, the location of

the auditory component nearer the perceptual boundary means that many perceived locations for the integrated

representation are in the "da" region of representational space, the McGurk fusion percept (blue shaded region). (F) In

experiment 1, twenty different "ba" tokens recorded by the same talker were paired with a single "ga" from the same talker

to create twenty different AbaVga McGurk stimuli. Each bar represents the % of McGurk fusion for a single stimulus. Two
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representational space, corresponding to the McGurk fusion

perception of “da” (Fig. 1E).

3.2. Experiments 1 and 2: finding strong and weak
McGurk stimuli, with replication

To test these predictions, in Experiment 1 twenty productions

of auditory “ba”were paired with the same visual “ga”. Across

stimuli, there was substantial variability in the responses,

ranging from 25% fusion responses to 65% fusion responses

(Fig. 1F). Participantswere also presentedwith unmanipulated

control stimuli consisting of three different congruent audio-

visual syllables (AbaVba, AdaVda, and AgaVga). Participants

responded accurately to the control stimuli, demonstrating

that they were engaged in the task and not responding

randomly. Table 1 shows behavioral data from all experi-

ments. Supplemental Table 1 shows measurements of

acoustic properties for the McGurk stimuli.

From the twenty different McGurk stimuli, we selected two

stimuli at opposite ends of the distribution for further inves-

tigation, labeling them "S1" and "S2" by analogy with the

modeling above. To ensure the stimulus differences between

S1 and S2 were reliable, in Experiment 2 we attempted to

replicate the results of Experiment 1, presenting only S1 and

S2. Similar rates of McGurk fusion responses were observed

(Fig. 1G; S1: 33% original vs 28% replication; S2: 62% vs 59%). A

linear mixed-effects analysis on fusion responses showed a

significant effect of stimulus [t (80) ¼ �4.3, p ¼ 10�5], but no

effect of experiment [t (156) ¼ �.4, p ¼ .66] or stimulus-by-

experiment interaction [t (80) ¼ �.18, p ¼ .86].

3.3. Experiments 3 and 4: comparing McGurk effect and
clear auditory syllables

Next, we created a stimulus that was the average of S1 and S2

(labeled “S1.500) in order to test two predictions of the CIMS

model. First, CIMS predicts that if S1 and S2 lie at different

locations in the representational space, then S1.5 should lie

between them. Second, CIMS predicts that there should be a

relationship between the perception of auditory “ba” syllables

presented alone and in combination with visual “ga”.

To test the first prediction, in Experiment 3 we presented

the three auditory-only “ba” components of S1, S1.5 and S2 to

40 participants. As expected, there was a decrease in the

number of “ba” percepts from S1 to S1.5 to S2 (Fig. 1H; 96% to

92% to 87%).

To test the second prediction, in Experiment 4, we pre-

sented the three stimuli (S1, S2, and S1.5, each consisting of a

different auditory "ba" paired with same visual "ga") to 40

participants. As expected, there was an increase in the
stimuli were selected for further analysis, dark bars labelled "S1"

(G) In experiment 2, S1 and S2 were presented to a different set o

experiment 1 and the replication sample in experiment 2 (p ¼ .6

created by averaging S1 and S2 and the auditory-only "ba" comp

“ba” percepts for each stimulus are shown. (I) In experiment 4,

and SEM of % McGurk percepts for each stimulus are shown. (J)

plotted against the perceptual accuracy for the auditory compo

different levels of auditory noise were added to the auditory co

measured.
McGurk fusion percepts from S1 to S1.5 to S2 (Fig. 1I). Repli-

cating the results of Experiments 1 and 2, S2 produced more

fusion responses than S1 (54% vs 38%; paired t-test, t ¼ �2.4,

p ¼ .02). The S1.5 stimulus produced an intermediate level of

fusion responses (46%).

To determine if there was a stimulus-level relationship

between syllable perception and theMcGurk effect, we plotted

the rates of McGurk perception for S1, S1.5 and S2 against the

perceptual accuracy for the auditory component of each

stimulus (Fig. 1J). To test for the linearity of this relationship,

we compared two different LMEs. The first LME assumed a

linear relationship between stimuli (coded 0, .5 and 1) while

the second LME allowed the stimuli to vary freely (categorical

coding of stimuli). Comparing BIC between the two models

yielded a better fit for the model assuming a linear relation-

ship (BIC difference 9). For the winning model, the estimated

slope across stimuli was 16 ± 6 [t (80) ¼ 2.6, p ¼ .01].

3.4. Experiments 5 and 6: comparing McGurk effect and
noisy auditory syllables

The CIMS model predicts that adding noise to the sensory

stimulus should broaden the distribution of perceived loca-

tions, which should differentially affect the different stimuli,

with a bigger effect on the weaker S2 stimulus. To test this

prediction, in Experiment 5 we added auditory noise to the

auditory-only “ba” component of S1 and S2 and presented

them to 40 participants (Fig. 1K). Neither stimulus was

perceived as “ba” at the highest noise level (SNR of �30 dB).

Decreasing the amount of added noise progressively

increased the number of "ba" reports until both stimuli always

evoked a “ba” percept at an SNR of 12 dB.

At intermediate noise levels, there were always fewer “ba”

reports for Stimulus 2 than Stimulus 1. Fig. 1B and C provide a

graphical depiction of the CIMS explanation for this obser-

vation. Adding noise broadens the distribution of perceived

locations of a stimulus within the representational space.

Stimulus 2 is a weaker stimulus as it lies close to the ba/da

boundary. Broadening the distribution by adding noise

means that the perceived location of S2 often falls outside

the “ba” region of representational space, resulting in few

“ba” reports. In contrast, Stimulus 1 is a stronger stimulus

and lies far from the ba/da boundary. For the same noise

level (distribution width), most presentations of S1 fall

within the “ba” region of representational space, resulting in

many “ba” reports.

An LME with fixed factors of noise (entered as SNR, with

clear speech set to þ12 dB), stimulus, and their interaction

along with random effect of subject yielded significant main

effects for stimulus [t (484) ¼ 7.0, p ¼ 10�11], noise [t
and "S2", analogous to modeled Stimulus 1 and Stimulus 2.

f participants. There was no significant difference between

6). (H) In experiment 3, a new stimulus (labeled "S1.5") was

onent of S1, S1.5 and S2 was presented. Mean and SEM of %

the McGurk stimuli S1, S1.5 and S2 were presented, mean

The rates of McGurk perception for S1, S1.5 and S2 were

nent of each stimulus, (I) versus (H). (K) In experiment 5,

mponents of S1 and S2 and the rate of “ba” responses
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Table 1 e Summary of all experiments.

Exp N Congruent Performance
(mean ± sem)

Responses to AbaVga (mean ± sem)

ba da ga # Stim ba da ga

1 128 97 ± 1 87 ± 2 98 ± 1 20 26 ± 3 46 ± 3 28 ± 2

2 40 97 ± 1 94 ± 3 98 ± 1 2 37 ± 5 44 ± 5 19 ± 4

3 40 96 ± 2 80 ± 6 98 ± 2

4 40 99 ± 1 93 ± 3 97 ± 2 3 34 ± 5 46 ± 6 20 ± 4

5 44 98 ± 1 98 ± 1 88 ± 3

6 38 96 ± 3 86 ± 5 100 ± 0 2 41 ± 7 41 ± 5 18 ± 4

7 34 97 ± 2 77 ± 6 97 ± 1 4 35 ± 7 56 ± 7 6 ± 3

Summary information details for each experiment (Exp) including the number of participants (N) and themean and standard error of the mean

(SEM) accuracy across participants for the control stimuli (Congruent Performance) and the response percentages to theMcGurk AbaVga stimuli

(first averaged across stimuli, then mean and SEM across participants).
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(484) ¼ 18.9, p < 10�16] and their interaction [t (484) ¼ �4.8,

p ¼ 10�5]. Compared with clear speech, at �12 dB the number

of “ba” reports decreased only slightly for S1 [99% vs 98%;

paired t (43) ¼ �.8, p ¼ .42] but decreased greatly for S2 [98% vs

53%; t (43) ¼ �8.0, p ¼ 10�10].

3.5. Section 2: Participant variability

There are two sources of participant variability in CIMS. The

first source is individual differences in sensory encoding

noise. Observer 1 might precisely encode speech, creating a

narrow distribution of perceived locations in representational

space, while Observer 2 might imprecisely encode speech,

creating a broad distribution (Fig. 2A). When presented with

an auditory “ba” near the perceptual boundary, the precise

representation of Observer 1 will result in mainly “ba” per-

cepts while the imprecise representation of Observer 2 will

blur many of the estimates into the “da” regions of represen-

tational space (Fig. 2B).

The second source of participant variability in CIMS is

individual differences in causal inference. Multisensory

integration is only beneficial if the cues to be integrated were

caused by the same real-world event (a single cause, C ¼ 1);

integrating cues generated by two different real-world

events (C ¼ 2) worsens perception. For presentation of clear

or noisy syllables, all cues strongly indicate that C ¼ 1,

reducing the impact of participant variability in causal

inference. In contrast, McGurk stimuli are created by dubbing

incongruent auditory and visual syllables, creating a conflict

between the temporal synchrony and spatial coincidence of

the auditory and visual syllables (which suggest that C ¼ 1)

and the content disparity between the heard speech and the

viewed mouth movement (which suggests that C ¼ 2). For

observers with a high tolerance for content disparity (leading

them to infer that C ¼ 1) optimal cue combination will more

strongly weight the integrated representation of auditory

and visual speech, usually resulting in the illusory McGurk

percept. For observers with a low tolerance for content

disparity (leading them to infer that C ¼ 2) optimal cue

combination will more strongly weight the reliable auditory-

speech representation, usually resulting in a percept corre-

sponding to the auditory token.
3.6. Experiments 5 and 6: participant variability in
McGurk effect and noisy syllable perception

To test these ideas, we examined the performance for those

participants who participated in both experiment 5 (where

they were presented with noisy syllables) and experiment 6

(where they were presented with McGurk stimuli). To prevent

floor or ceiling effects, the measure for noisy syllable

perception was the accuracy of perception of stimulus S2

presented at the�12 dB noise level in experiment 5. Therewas

substantial variability in perception of theMcGurk effect, with

rates ranging from 0% to 100% and in perception of noisy

syllables, with accuracy ranging from 0% to 100%. However,

across participants there was low correlation between the two

values, r (36)¼�.09, p¼ .60 (Fig. 2E). Participantswere found in

all quadrants of the plot, explained by CIMS as participants

with low versus high encoding noise and low versus high

tolerance for audiovisual disparity in their causal inference

judgments.

Next, we considered all noise levels across participants by

comparing two LMEs: the original LME fit to the noisy syllable

data (dependent variable accuracy; fixed effects of stimulus,

noise level and their interaction; random effect of subject) and

a second LME that additionally contained subject-level

McGurk perception (per stimulus). Comparing BIC between

models, we found that knowing subject-level McGurk re-

sponses did not explain additional variance in noisy-syllable

perception (BIC difference 11). Importantly, this absence of

participant-level relationships between McGurk and noisy

syllable perception occurred despite the presence of a

stimulus-level relationship: S1 was more accurate than S2

(77% vs 48%, across all noise levels), but S2 produced more

McGurk responses (61% vs 39%).

3.7. Experiment 7: participant variability in McGurk
effect and noisy sentence perception

To assess whether there was an acrosseparticipant correla-

tion for more complex forms of speech, in Experiment 7 we

compared perception of the McGurk effect and perception of

noisy sentences in 33 participants. There was substantial

variability in the rate of perceiving the McGurk effect across

https://doi.org/10.1016/j.cortex.2020.10.002
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Figure 2 e The CIMS model applied to participant variability. (A) Variability in speech perception between participants can

arise from individual differences in sensory encoding. For an observer with high precision, there will be a narrower

distribution of perceived locations for a given stimulus (shown for Stimulus 1 from Fig. 1A). (B) For an observer with low

precision, there will be a broader distribution of perceived locations for a given stimulus (shown for Stimulus 1 from Fig. 1A).

(C) Even if encoding precision is identical, variability in speech perception between participants can also arise from

individual differences in causal inference. For an observer with high tolerance for disparity presented with a McGurk

stimulus consisting of auditory "ba" and visual "da", the observer infers that the auditory and visual cues arise from a single

talker (C¼ 1, illustrated as relative heights of C¼ 1 and C¼ 2 bars). Optimal cue integration reflects this inference so that the

integrated representation lies between the auditory and visual representations, with most percepts falling in the "da" region

of representational space (blue shaded region, high rates of McGurk). (D) An observer with low tolerance for disparity infers

that the auditory and visual speech in the McGurk stimulus arises from two different talkers (C¼ 2). Optimal cue integration

reflects this inference so that the integrated representation is weighted by the auditory-only representation, with most

percepts falling in the "ba" region of representational space (green shaded region, low rates of McGurk). (E) Rates of McGurk

and accuracy of noisy auditory syllable presentation across participants, one symbol per participant, r (36) ¼ ¡.09, p ¼ .60.

The noisy syllable measure is the accuracy of perception of stimulus S2 with¡12 dB noise added from experiment 5 and the

rate of McGurk perception is from experiment 6. Participants were distributed across quadrants with all combinations of

low and high sensory encoding precision and low and high tolerance for audiovisual disparity. During plotting, the location

of each symbol was randomly jittered by up to 2% in both the x and y directions to create visual separation between

overlapping symbols; this can result in plotted values that lie outside the actual range of the data values (0%e100%). (F) Rates

of McGurk and multisensory gain during noisy sentence perception across participants in experiment 7, one symbol per

participant; r (31)¼ .261, p¼ .14. The audiovisual gainmeasure is the percentage of keywords understood during perception

of noisy sentences with the talker visible minus the percentage of keywords understood during perception of auditory-only

noisy sentences.
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different participants, from 0% to 100% (Fig. 2F). For noisy

sentences, participants correctly reported 14 out of 160 (9%) of

keywords for auditory-only sentences but correctly reported

62 out of 160 (39%) of key words for audiovisual sentences, a

30% improvement [AV - A, paired t (33) ¼ 14.0, p ¼ 10�15].

However, therewas substantial variability in the visual benefit

across participants, ranging from a 6% improvement in the

number of key words recognized to a 56% improvement

(Fig. 2F). For consistency with previous reports, in addition to

multisensory gain (AV - A) we also calculated a visual

enhancement index for each participant, VE¼ [(AV - A)/(1 - A)]

(Van Engen et al., 2017). The mean visual enhancement was

34% (range 6%e63%).

Next, we compared the two axes of individual variability.

There were low correlations between rates of McGurk effect

and multisensory gain, r (31) ¼ .261, p ¼ .14 (Fig. 2F); between

rates of McGurk effect and the visual enhancement index, r

(31) ¼ .256, p ¼ .14; and between rates of McGurk effect and

auditory-only performance, r (31) ¼ �.06, p ¼ .73. As in the

syllable perception data, participants fell in all 4 quadrants of

the plot, with high and low McGurk susceptibility and high

and low multisensory gain.
4. Discussion

We used natural variation in the production of the syllable

“ba” to understand the relationship between the McGurk ef-

fect and other speech perception tasks. Pairing twenty unique

auditory “ba” syllables with a single visual “ga” produced

stimuli that elicited reliably different levels of McGurk

perception across large groups of subjects. For two stimuli

that differed substantially in their McGurk strength, the

auditory “ba” that was less effective at evoking the McGurk

effect was recognized more accurately in both clear and noisy

auditory-only perception tasks. The stimulus-level relation-

ship between McGurk and auditory-only perception was well-

described by the CIMS model. Across participants, the CIMS

model also provided a straightforward explanation of why

perception of noisy speech and McGurk stimuli are only

weakly correlated. For speech-in-noise tasks, individual dif-

ferences arise from variability in sensory encoding (how well

one understands the individual speech tokens) while for the

McGurk effect, individual differences arise from both sensory

encoding and variability in how cue conflict between modal-

ities is resolved.

4.1. Stimulus differences in the McGurk effect

BasuMallick and colleagues (BasuMallick et al., 2015) reported

high variation in the McGurk effect across different stimuli

(rates ranging from 17% to 58%) and participants (rates from

0% to 100%).While a careful study ofmany acoustic and visual

properties of McGurk stimuli showed that taken together they

accounted for about half of the variability in the frequency of

the effect across stimuli and participants (Jiang & Bernstein,

2011), it is not clear if the factors contributing to variability

in the McGurk effect are relevant for other forms of speech

perception.
Speech production is known to be variable in both articu-

lation and acoustics (Holmberg et al., 1994; Whalen et al.,

2018), with voice onset time serving as a particularly useful

measure (Abramson & Whalen, 2017). The stimuli in the Basu

Mallick study were culled from different sources and con-

tained different talkers, different views of the face and upper

body, different native languages, and different video and

audio quality. To better control these factors, in the present

studywe created a new corpus of McGurk stimuli that were all

recorded from the same talker within a short time span and

had the same visual component, making them closely

matched for auditory properties and with identical visual

properties. Nevertheless, the efficacy of each McGurk stim-

ulus varied, and this variability was related to the perception

of the auditory component of each stimulus in the direction

predicted by the CIMSmodel. Auditory “ba” tokensmodeled as

being more prototypical were more likely to evoke a “ba”

percept when presented alone, either with or without added

noise, and were less likely to evoke a McGurk fusion percept

when paired with a visual “ga”.

4.2. Relating the McGurk effect to other speech
perception tasks

Van Engen and colleagues (Van Engen et al., 2017) reported

non-significant correlations betweenMcGurk effect and visual

enhancement of noisy speech, while Brown and colleagues

(Brown et al., 2018) reported weak but significant correlations

between McGurk effect and lipreading accuracy. Many other

studies have also reported weak relationships between

different measures of speech perception (Grant and Seitz,

1998, 2000; Sommers et al., 2005; Stevenson et al., 2012;

Strand et al., 2018; Rennig et al., 2020; Stacey et al., 2020). If

correlations between any two measures are weak, large

sample sizes are necessary for accurate estimation. The pre-

sent study found a non-significant relationship (p ¼ .14) be-

tween McGurk perception and noisy speech perception, with

an effect size of r ¼ .26. To detect (p < .05) an effect of this size

with 90% power would require a sample size of 151 partici-

pants, more than in most published studies of the McGurk

effect (Magnotti & Beauchamp, 2018).

Perception of noisy speech and lipreading do not require

causal inference, as all cues indicate that the speech arises

from a single talker. In contrast, perception of the McGurk

effect requires a causal inference judgment because of the

conflicting cues from temporal synchrony (which suggests

that C ¼ 1) and content incongruity (which suggests that

C ¼ 2). Any model of cue conflicts requires additional ma-

chinery beyond sensory encoding, introducing additional in-

dividual variability. Evidence suggests that cross-subject

variability in the tendency to bind audiovisual signals is found

across a range of tasks, and that these differences are stable

across time but are task-specific (Odegaard & Shams, 2016).

Findings that the McGurk effect shows different neural

signatures than congruent audiovisual syllables (Erickson et

al., 2014; Moris Fernandez et al., 2017; S�anchez-Garcı́a et al.,

2018) has been used as evidence that the McGurk effect is

processed differently than other types of speech. An alterna-

tive explanation is that McGurk stimuli, but not congruent
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syllables, place greater demands on neural circuits underlying

causal inference judgments.

Neurocomputational models of the McGurk effect show

how the McGurk effect can be generated from biologically

realistic neural responses. In the model of Cuppini and col-

leagues (Cuppini et al., 2017a, 2017b) distinct unisensory vi-

sual and auditory regions share reciprocal interconnections,

as well as projecting downstream to a multisensory area that

performs causal inference. Olasagasti and colleagues

(Olasagasti et al., 2015) applied a hierarchical predictive coding

framework to model sequential activation of causal units,

incorporating the earlier arrival in the brain of visual speech

information relative to auditory speech information.

These neurocomputational models are consistent with

BOLD fMRI studies suggesting anatomical dissociations be-

tween brain areas responsible for sensory encoding and those

responsible for causal inference judgments (Cuppini, Shams,

et al., 2017; Rohe & Noppeney, 2015). Conversely, perception

of noisy sentences calls on many cognitive processes in

addition those required for syllable or McGurk perception

(Davis & Johnsrude, 2007). Contextual information is thought

to be modulated by top-down projections from frontal cortex,

a different set of brain areas from the networks responsible for

sensory encoding and causal inference judgments (Cope et al.,

2017; Gau & Noppeney, 2016; Peelle & Sommers, 2015;

Tuennerhoff & Noppeney, 2016). Given these neuroanatom-

ical dissociations, it is unsurprising that individual differences

in noisy speech perception are only weakly correlated with

individual differences in McGurk perception.
5. Conclusions

One criticism of the McGurk effect is that it varies across

stimuli and participants (Alsius et al., 2018; Rosenblum, 2019).

This criticism is not compelling as it is equally true of other

measures such as audiovisual speech-in-noise (Rennig et al.,

2020; Van Engen et al., 2017). A second criticism of the

McGurk effect, that it is only weakly correlated with other

measures, is similarly non-specific: manymeasures of speech

perception show weak pairwise correlations (Strand et al.,

2018). CIMS and related models predict perception of both

McGurk and other forms of speech with identical parameter

sets, suggesting that both types of speech are processed using

similar computations and that the McGurk effect can serve as

a useful tool for interrogating everyday speech perception.

Selective publication of only the statistically significant

results from underpowered studies is an important contrib-

utor to the replication crisis in science. A review of 119 pub-

lished studies on the McGurk effect found an average group

size of n ¼ 22 participants (Magnotti & Beauchamp, 2018).

Along with the current study, only a few studies have enrolled

the large sample size (n > 100) necessary to accurately esti-

mate group differences in the McGurk effect (Basu Mallick

et al., 2015; Magnotti et al., 2015). In addition to variability

across participants, there is also variability across different

McGurk stimuli. This variability is consistent, such that a

weak McGurk stimulus in one individual is also a weak stim-

ulus in another (Basu Mallick et al., 2015; Magnotti &

Beauchamp, 2015). Taken together, these two sources of
variability underscore the importance of large n samples,

tested using a variety of stimuli, when examining the McGurk

effect or other phenomena with substantial variability

(Magnotti & Beauchamp, 2018).

A more philosophical criticism of the McGurk effect is that

the effect is somehow “unnatural” because stimuli aremade by

splicing together incongruent auditory and visual recordings.

However, multiple talkers speaking at once is a common real-

world situation that requires observers to process conflicting

auditory and visual speech streams (French& DeAngelis, 2020;

Kording et al., 2007). The McGurk effect, which requires reso-

lutionof conflictingauditory andvisual cues, could therefore be

a bettermodel for understanding individual differences in real-

world social interactions than simpler tasks not requiring

conflict resolution. Of course, audiovisual speech perception is

not a unitary phenomenon easily captured by a single behav-

ioral measure (Soto-Faraco & Alsius, 2009). Rather than trying

to classify differentmeasures of speech perception as “good” or

“bad”, we advocate creating an explicit model of the particular

process of interest andusing themodel to guide selection of the

appropriate stimulus and task.
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